Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 570 results
Advanced filters: Author: Adam R. Hall Clear advanced filters
  • Large-effect variants in autism remain elusive. Here, the authors use long-read sequencing to assemble phased genomes for 189 individuals, identifying pathogenic variants in TBL1XR1, MECP2, and SYNGAP1, plus nine candidate structural variants missed by short-read methods.

    • Yang Sui
    • Jiadong Lin
    • Evan E. Eichler
    ResearchOpen Access
    Nature Communications
    P: 1-16
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • Certain materials without inversion symmetry may allow for a nonlinear anomalous Hall effect with conserved time reversal symmetry. Here, the authors report an extremely large c-axis nonlinear anomalous Hall effect in the non-centrosymmetric Td phase of MoTe2 and WTe2 without intrinsic magnetic order that is dominated by extrinsic scattering.

    • Archana Tiwari
    • Fangchu Chen
    • Adam W. Tsen
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • Topological phases in quantum many-body systems emerge from long-range entanglement rather than symmetry breaking, giving rise to properties such as topology-dependent degeneracy, protected edge modes and anyonic excitations. This Review discusses recent advances on how to realize and study such interacting topological states on digital quantum computers.

    • Adam Gammon-Smith
    • Michael Knap
    • Frank Pollmann
    Reviews
    Nature Reviews Physics
    P: 1-11
  • Hiʻiaka is the largest moon of the distant dwarf planet Haumea. Here, the authors report the first multi-chord stellar occultations of Hiʻiaka, revealing its size, shape, and density, suggesting an origin from Haumea’s icy mantle.

    • Estela Fernández-Valenzuela
    • Jose Luis Ortiz
    • Dmitry Monin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Charge-to-spin conversion is critical element for spintronic devices. In most materials, there are several sources of charge-to-spin conversion, which are often challenging to disentangle. Here, Chen et al succeed in disentangling spin Hall and Rashba-Edelstein contributions to charge-to-spin conversion in ultrathin MoTe2 using position dependent measurements of the current-induced spin accumulation.

    • Fangchu Chen
    • Kamal Das
    • Adam W. Tsen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • In some materials electrons can behave hydrodynamically, exhibiting phenomena associated with classical viscous fluids. In this theory work, the authors show that the symmetries of the crystal lattices in which the electrons reside can lead to additional unique hydrodynamic effects.

    • Georgios Varnavides
    • Adam S. Jermyn
    • Prineha Narang
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-6
  • An initial draft of the human pangenome is presented and made publicly available by the Human Pangenome Reference Consortium; the draft contains 94 de novo haplotype assemblies from 47 ancestrally diverse individuals.

    • Wen-Wei Liao
    • Mobin Asri
    • Benedict Paten
    ResearchOpen Access
    Nature
    Volume: 617, P: 312-324
  • The CMS Collaboration reports the measurement of the spin, parity, and charge conjugation properties of all-charm tetraquarks, exotic fleeting particles formed in proton–proton collisions at the Large Hadron Collider.

    • A. Hayrapetyan
    • V. Makarenko
    • A. Snigirev
    ResearchOpen Access
    Nature
    Volume: 648, P: 58-63
  • Robots benefit from touch perception, but sensing multi-directional forces is challenging. Here, the authors introduce a theory using taxel value isolines for superresolution sensing, improving sensor design and performance under shear forces.

    • Huanbo Sun
    • Adam Spiers
    • Georg Martius
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Femtosecond photoexcitation drives a coherent twist–untwist motion of the moiré superlattice in 2° and 57° twisted WSe2/MoSe2 heterobilayers.

    • Cameron J. R. Duncan
    • Amalya C. Johnson
    • Fang Liu
    Research
    Nature
    Volume: 647, P: 619-624
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Here authors show loss of AKAP11, a strong genetic risk factor for bipolar disorder and schizophrenia, disrupts PKA proteostasis and signaling, leading to widespread transcriptomic alterations across the brain, particularly in striatal neurons, as well as altered behavior.

    • Bryan J. Song
    • Yang Ge
    • Morgan Sheng
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-25
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Assessment of surface contamination shows that trace oxygen is a key factor influencing the trajectory and quality of graphene grown by low-pressure chemical vapour deposition, with oxygen-free synthesis showing increased reproducibility and quality.

    • Jacob Amontree
    • Xingzhou Yan
    • James Hone
    Research
    Nature
    Volume: 630, P: 636-642
  • Terahertz absorption reduces the viscosity of the hydrodynamic electron fluid in graphene and thereby enables easier flow of electrons. This results in a drop in resistance within graphene constrictions under terahertz radiation, facilitating fast and sensitive terahertz detection.

    • M. Kravtsov
    • A. L. Shilov
    • D. A. Bandurin
    Research
    Nature Nanotechnology
    Volume: 20, P: 51-56
  • A crucial prerequisite for semiconductor-based spintronic devices is that the spins of the charge carriers can be efficiently injected and detected. Here, the authors achieve such functionality in niobium-doped strontium titanate by the Hanle technique, and at the same time demonstrate the limitations of this approach.

    • Wei Han
    • Xin Jiang
    • Stuart S. P. Parkin
    Research
    Nature Communications
    Volume: 4, P: 1-6
  • Phosphorene nanoribbons demonstrate extraordinary magnetic properties, ranging from large internal fields in films to macroscopic alignment in solution, which can be coupled to photoexcitations that localize to the magnetic edge of these ribbons.

    • Arjun Ashoka
    • Adam J. Clancy
    • Raj Pandya
    ResearchOpen Access
    Nature
    Volume: 639, P: 348-353
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Despite their name, the bulk electrical conductivity of most topological insulators is relatively high, masking many of the important characteristics of its protected, surface conducting states. Counter-doping reduces the bulk conductivity of Bi2Se3 significantly, allowing these surface states and their properties to be clearly identified.

    • Dohun Kim
    • Sungjae Cho
    • Michael S. Fuhrer
    Research
    Nature Physics
    Volume: 8, P: 459-463
  • Here the authors provide an explanation for 95% of examined predicted loss of function variants found in disease-associated haploinsufficient genes in the Genome Aggregation Database (gnomAD), underscoring the power of the presented analysis to minimize false assignments of disease risk.

    • Sanna Gudmundsson
    • Moriel Singer-Berk
    • Anne O’Donnell-Luria
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Tools for diversifying genomic DNA in mammalian cells have long relied on base editors making C to T or A to G substitutions. Here, authors use RNA-guided DNA polymerases (EvolvR) to evolve mammalian cells using all twelve substitutions and show that nickase fidelity affects EvolvR’s mutation rates.

    • Juan E. Hurtado
    • Adam J. Schieferecke
    • John E. Dueber
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Valuable insight into the influence of scattering from impurities on the peculiar electronic properties of graphene are gained by a systematic study of how its conductivity changes with increasing concentration of potassium ions deposited on its surface.

    • J.-H. Chen
    • C. Jang
    • M. Ishigami
    Research
    Nature Physics
    Volume: 4, P: 377-381
  • Engineering a coupling between magnetic molecules and conducting materials at room temperature could help the development of spintronic devices. Loh et al. show that the spin state of QDTP molecules deposited on graphene and MoS2 couples to their electronic structure, affecting magnetotransport.

    • Subhadeep Datta
    • Yongqing Cai
    • Kian Ping Loh
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-8
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Analysis of human Robertsonian chromosomes originating from 13, 14 and 21 reveal that they result from breaks at the SST1 macrosatellite DNA array and recombination between homologous sequences surrounding SST1.

    • Leonardo Gomes de Lima
    • Andrea Guarracino
    • Jennifer L. Gerton
    ResearchOpen Access
    Nature
    Volume: 647, P: 952-961
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • We demonstrate an avalanche photodiode design using photon-trapping structures to enhance the quantum efficiency and minimizing the absorber thickness, yielding high quantum efficiency, suppressed dark current density and bandwidth of ~7 GHz.

    • Dekang Chen
    • Stephen D. March
    • Joe C. Campbell
    ResearchOpen Access
    Nature Photonics
    Volume: 17, P: 594-600
  • Reopening of universities to students following COVID-19 restrictions risks increased transmission due to high numbers of social contacts and the potential for asymptomatic transmission. Here, the authors use a mathematical model with social contact data to estimate the impacts of reopening a typical non-campus based university in the UK.

    • Ellen Brooks-Pollock
    • Hannah Christensen
    • Leon Danon
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-10
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24