Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 327 results
Advanced filters: Author: Chan Ding Clear advanced filters
  • Here the authors report that some aspects of clinical heterogeneity in type 2 diabetes vary across populations. Using a deep-learning–based tree model built from over 32,000 patients, they document disease patterns and risks specific for the Chinese population, potentially enabling more precise prediction and personalized care.

    • Tong Yue
    • Wenhao Zhang
    • Jianping Weng
    ResearchOpen Access
    Nature Communications
    P: 1-16
  • The high-plasticity cell state (HPCS) is a critical hub that enables reciprocal transitions between cancer cell states, and targeting the HPCS may suppress cancer progression and eradicate treatment resistance.

    • Jason E. Chan
    • Chun-Hao Pan
    • Tuomas Tammela
    ResearchOpen Access
    Nature
    P: 1-11
  • WNT-signaling activation is a promising strategy for adult tissue and organ rejuvenation. The authors report an efficient approach to generate exosomes carrying WNTs and RSPONDINs family ligands that can achieve strong activation of the pathway to regenerate diseased and aged livers.

    • Lingyan Yang
    • Shixiang Wang
    • Yun-Shen Chan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • Increasing evidence suggests that activation of oncogenic pathways contributes to an unfavorable tumor microenvironment. Here, the authors show that wild-type KRAS plays a key role in immune evasion in hepatocellular carcinoma by impairing interferon-mediated immunity and promoting resistance to immunotherapy via the EGFR/MEK/ERK pathway.

    • Martina Mang Leng Lei
    • Carmen Oi Ning Leung
    • Terence Kin Wah Lee
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Tumour heterogeneity in clear cell renal cell carcinoma (ccRCC) remains to be investigated. Here, the integration of spatial omics, transcriptional and chromatin accessibility profiling at the single-nucleus level and bulk proteogenomics data reveal markers and pathways important for ccRCC.

    • Yige Wu
    • Nadezhda V. Terekhanova
    • Feng Chen
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-25
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • It is uncertain how much life expectancy of the Chinese population would improve under current and greater policy targets on lifestyle-based risk factors for chronic diseases and mortality behaviours. Here we report a simulation of how improvements in four risk factors, namely smoking, alcohol use, physical activity and diet, could affect mortality. We show that in the ideal scenario, that is, all people who currently smokers quit smoking, excessive alcohol userswas reduced to moderate intake, people under 65 increased moderate physical activity by one hour and those aged 65 and older increased by half an hour per day, and all participants ate 200 g more fresh fruits and 50 g more fish/seafood per day, life expectancy at age 30 would increase by 4.83 and 5.39 years for men and women, respectively. In a more moderate risk reduction scenario referred to as the practical scenario, where improvements in each lifestyle factor were approximately halved, the gains in life expectancy at age 30 could be half those of the ideal scenario. However, the validity of these estimates in practise may be influenced by population-wide adherence to lifestyle recommendations. Our findings suggest that the current policy targets set by the Healthy China Initiative could be adjusted dynamically, and a greater increase in life expectancy would be achieved.

    • Qiufen Sun
    • Liyun Zhao
    • Chan Qu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Cell type labelling in single-cell datasets remains a major bottleneck. Here, the authors present AnnDictionary, an open-source toolkit that enables atlas-scale analysis and provides the first benchmark of LLMs for de novo cell type annotation from marker genes, showing high accuracy at low cost.

    • George Crowley
    • Robert C. Jones
    • Stephen R. Quake
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Enfortumab vedotin (EV) is the current standard treatment for advanced bladder cancer, but resistance typically develops within a year, highlighting the need for new therapies. This study demonstrates that NECTIN4-targeting CAR T cells are effective against bladder cancer, including EV-resistant cells, and their potency can be further enhanced by using rosiglitazone to boost NECTIN4 expression.

    • Kevin Chang
    • Henry M. Delavan
    • Jonathan Chou
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Here, the authors sample air and surfaces in hospital rooms of COVID-19 patients, detect SARS-CoV-2 RNA in air samples of two of three tested airborne infection isolation rooms, and find surface contamination in 66.7% of tested rooms during the first week of illness and 20% beyond the first week of illness.

    • Po Ying Chia
    • Kristen Kelli Coleman
    • Daniela Moses
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-7
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Ni, Wei, Vona and colleagues use human brain organoids to dissect patient AIRIM variants associated with neurodevelopmental features. A subset of variants impaired ribosome production and protein synthesis, and delayed radial glial cell specification.

    • Chunyang Ni
    • Yudong Wei
    • Michael Buszczak
    ResearchOpen Access
    Nature Cell Biology
    Volume: 27, P: 1240-1255
  • Wild relatives of crop plants are invaluable germplasm for genetic improvement. Here, Xie et al. report a reference-grade wild soybean genome and show that it can be used to identify structural variation and refine quantitative trait loci.

    • Min Xie
    • Claire Yik-Lok Chung
    • Hon-Ming Lam
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-12
  • Assessing functional impact of mutations in cancer on gene expression can improve our understanding of cancer biology and may identify potential therapeutic targets. Here, Ding et al. describe a novel statistical model named xseq for a systematic survey of how mutations impact transcriptome landscapes across 12 different tumour types.

    • Jiarui Ding
    • Melissa K. McConechy
    • Sohrab P. Shah
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-13
  • Together with a companion paper, the generation of a transcriptomic atlas for the mouse lemur and analyses of example cell types establish this animal as a molecularly tractable primate model organism.

    • Antoine de Morree
    • Iwijn De Vlaminck
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 173-184
  • Together with an accompanying paper presenting a transcriptomic atlas of the mouse lemur, interrogation of the atlas provides a rich body of data to support the use of the organism as a model for primate biology and health.

    • Camille Ezran
    • Shixuan Liu
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 185-196
  • Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.

    • Wendy Xin
    • Megumi Kaneko
    • Jonah R. Chan
    ResearchOpen Access
    Nature
    Volume: 633, P: 856-863
  • The relationship between pathogenic germline variation, clonal hematopoiesis (CH) and risk of hematologic malignancy is explored in 731,835 individuals across 6 cohorts. Carriers of variants in certain genes show distinct patterns of CH and increased risk of CH progression to malignancy.

    • Jie Liu
    • Duc Tran
    • Kelly L. Bolton
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1872-1880
  • Light carries momentum and therefore can be used to push small particles forward. Here, Wang and Chan demonstrate that under the right conditions a light beam can also exert sideway forces on chiral particles.

    • S. B. Wang
    • C. T. Chan
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-8