Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1645 results
Advanced filters: Author: David Zhu Clear advanced filters
  • The herpes simplex virus lytic-latent balance is incompletely understood. In this study, the authors show that it is controlled by the relative abundance of host activating and repressive forkhead box (FOX) transcription factors that recruit epigenetic cofactors to the viral genome to remodel viral chromatin.

    • Yuhang Xiang
    • Xiyuan Yang
    • Dongli Pan
    ResearchOpen Access
    Nature Communications
    P: 1-19
  • Analysis combining multiple global tree databases reveals that whether a location is invaded by non-native tree species depends on anthropogenic factors, but the severity of the invasion depends on the native species diversity.

    • Camille S. Delavaux
    • Thomas W. Crowther
    • Daniel S. Maynard
    ResearchOpen Access
    Nature
    Volume: 621, P: 773-781
  • Electrochemical CO reduction to multi-carbon products offers a carbon-negative approach to produce chemicals, but the intricate reaction pathways lead to a broad spectrum of products. Now it has been shown that alkali cations alter the mechanistic pathways that govern the reaction selectivity involved in the formation of hydrocarbons versus oxygenates.

    • Weiyan Ni
    • Yongxiang Liang
    • Edward H. Sargent
    Research
    Nature Chemistry
    P: 1-8
  • Applications of optical laser-based techniques are limited by the long wavelengths of the lasers. Now, observations of phonons and thermal transport at nanometre length scales are reported with an all-hard X-ray transient-grating spectroscopy technique.

    • Haoyuan Li
    • Nan Wang
    • Diling Zhu
    Research
    Nature Physics
    P: 1-6
  • Floquet engineering is often limited by weak light–matter coupling and heating. Now it is shown that exciton-driven fields in monolayer semiconductors produce stronger, longer-lived Floquet effects and reveal hybridization linked to excitonic phases.

    • Vivek Pareek
    • David R. Bacon
    • Keshav M. Dani
    Research
    Nature Physics
    P: 1-9
  • China’s crowded coasts must balance seafood demand with conserving migratory shorebirds that rely on tidal flats along the East Asian–Australasian Flyway. This study suggests that well-managed mariculture feeds shorebirds and limits overharvest, benefiting seafood production and biodiversity.

    • He-Bo Peng
    • Zhenchang Zhu
    • Theunis Piersma
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Polymer thin films that emit and absorb circularly polarised light are promising in achieving important technological advances, but the origin of the large chiroptical effects in such films has remained elusive. Here the authors demonstrate that in non-aligned polymer thin films, large chiroptical effects are caused by magneto-electric coupling, not structural chirality as previously assumed.

    • Jessica Wade
    • James N. Hilfiker
    • Matthew J. Fuchter
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-11
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Lung adenocarcinomas bearing the ID2 mutational signature display increased LINE-1 retrotransposon activity, which contributes to their fast evolutionary dynamics and aggressive phenotype.

    • Tongwu Zhang
    • Wei Zhao
    • Maria Teresa Landi
    Research
    Nature
    Volume: 650, P: 230-241
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Here, the authors report an exome-wide association study for multi-organ imaging traits by leveraging recent bioinformatic tools such as AlphaMissense. The identified signals elucidate the genetic effects from rare variants on human organs and their connections to complex diseases

    • Yijun Fan
    • Jie Chen
    • Bingxin Zhao
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-21
  • Elebsiran plus PEG-IFNα improved hepatitis B surface antigen (HBsAg) loss rates compared with PEG-IFNα alone in patients with chronic hepatitis B virus infection. Furthermore, prior response to the BRII-179 vaccine was associated with higher HBsAg clearance, suggesting its potential as a predictive tool for identifying patients more likely to benefit from therapies.

    • Grace Lai-Hung Wong
    • Man-Fung Yuen
    • Zhi Hong
    ResearchOpen Access
    Nature Medicine
    Volume: 32, P: 151-159
  • Species’ traits and environmental conditions determine the abundance of tree species across the globe. Here, the authors find that dominant tree species are taller and have softer wood compared to rare species and that these trait differences are more strongly associated with temperature than water availability.

    • Iris Hordijk
    • Lourens Poorter
    • Thomas W. Crowther
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • SynGFN integrates synthesis constraints directly into the chemical design process. The result is a generative framework that produces diverse, high-quality molecules that can be readily synthesized in the laboratory.

    • Jeremie Alexander
    • Jonathan M. Stokes
    News & Views
    Nature Computational Science
    Volume: 6, P: 13-14
  • The authors uncover a direct, BAI1-dependent, role for C1q in the control of neural stem cell proliferation and quiescence via MDM2–p53 and p32, a complement cascade-independent mechanism of C1q action that has implications for central nervous system health and disease.

    • Katja M. Piltti
    • Anita Lakatos
    • Aileen J. Anderson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • The dorsal peduncular area of the mouse brain functions as a network hub that integrates diverse cortical and thalamic inputs to regulate neuroendocrine and autonomic responses.

    • Houri Hintiryan
    • Muye Zhu
    • Hong-Wei Dong
    ResearchOpen Access
    Nature
    P: 1-15
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477