Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 2032 results
Advanced filters: Author: Michael D. Chan Clear advanced filters
  • How white matter develops along the length of major tracts in humans remains unknown. Here, the authors identify fundamental patterns of human white matter development along distinct axes that reflect brain organization.

    • Audrey C. Luo
    • Steven L. Meisler
    • Theodore D. Satterthwaite
    ResearchOpen Access
    Nature Communications
    P: 1-19
  • Floquet engineering is often limited by weak light–matter coupling and heating. Now it is shown that exciton-driven fields in monolayer semiconductors produce stronger, longer-lived Floquet effects and reveal hybridization linked to excitonic phases.

    • Vivek Pareek
    • David R. Bacon
    • Keshav M. Dani
    Research
    Nature Physics
    P: 1-9
  • Analysis of a placebo-controlled trial of a BCMA-targeting CAR-T cell therapy in patients with myasthenia gravis shows that CAR-T cell infusion selectively remodels the systemic immune environment, with elimination of BCMA-high plasma cells and activated plasmacytoid dendritic cells and changes in the autoreactive B cell repertoire.

    • Renee R. Fedak
    • Rachel N. Ruggerie
    • Kelly Gwathmey
    ResearchOpen Access
    Nature Medicine
    P: 1-13
  • Projected impacts of climate change on malaria burden in Africa by 2050 highlight the urgent need for climate-resilient malaria control strategies and robust emergency response systems to safeguard progress towards malaria eradication.

    • Tasmin L. Symons
    • Alexander Moran
    • Peter W. Gething
    ResearchOpen Access
    Nature
    P: 1-7
  • Genomic analyses applied to 14 childhood- and adult-onset psychiatric disorders identifies five underlying genomic factors that explain the majority of the genetic variance of the individual disorders.

    • Andrew D. Grotzinger
    • Josefin Werme
    • Jordan W. Smoller
    ResearchOpen Access
    Nature
    Volume: 649, P: 406-415
  • The existing ENCODE registry of candidate human and mouse cis-regulatory elements is expanded with the addition of new ENCODE data, integrating new functional data as well as new cell and tissue types.

    • Jill E. Moore
    • Henry E. Pratt
    • Zhiping Weng
    ResearchOpen Access
    Nature
    P: 1-10
  • Many premalignant colorectal polyps in familial adenomatous polyposis arise polyclonally rather than from a single mutated cell, showing diverse early evolutionary trajectories that frequently occur without clonal APC or KRAS driver events.

    • Debra Van Egeren
    • Ryan O. Schenck
    • Christina Curtis
    ResearchOpen Access
    Nature
    P: 1-8
  • T cells can recognise lipid antigen in the context of CD1d molecules. Here, the authors show that γδ T cell activation in response to CD1d differs from that of αβ T cells and determine the structure of a γδ T cell receptor that binds to CD1d independently of the presented lipid.

    • Michael T. Rice
    • Sachith D. Gunasinghe
    • Jamie Rossjohn
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-12
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Chure et al. analyse experimental data to show that E. coli bacteria maintain stable protein density ratios between cytoplasm and membranes. In addition, they develop a biophysical model that predicts surface-to-volume ratio from ribosomal content and protein partitioning across cell compartments.

    • Griffin Chure
    • Roshali T. de Silva
    • Jonas Cremer
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • A 15-year prospective cohort study found that during times of social unrest in Hong Kong, people experienced more conflicts with family and friends and this coincided with the use of social media—these factors were also associated with higher levels of depression.

    • Jian Shi
    • Candi M. C. Leung
    • Michael Y. Ni
    Research
    Nature Medicine
    Volume: 32, P: 224-230
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Ewing sarcoma (ES) is driven by the oncogenic fusion-protein EWSR1::FLI1. Here the authors identify that a galactosyltransferase C1GALT1 stabilizes Smoothened protein to activate Hedgehog signaling and promote EWSR1::FLI1 transcription in ES cells, which could be therapeutically targeted by an anti-fungal drug itraconazole that inhibits C1GALT1.

    • Shahid Banday
    • Alok K. Mishra
    • Michael R. Green
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Here the authors provide an explanation for 95% of examined predicted loss of function variants found in disease-associated haploinsufficient genes in the Genome Aggregation Database (gnomAD), underscoring the power of the presented analysis to minimize false assignments of disease risk.

    • Sanna Gudmundsson
    • Moriel Singer-Berk
    • Anne O’Donnell-Luria
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Vinyard et al. present a generative method to model cell dynamics using neural stochastic differential equations that learn state-dependent drift and diffusion, outperforming existing approaches and enabling perturbation studies of development and disease.

    • Michael E. Vinyard
    • Anders W. Rasmussen
    • Luca Pinello
    Research
    Nature Machine Intelligence
    Volume: 7, P: 1969-1984
  • Together with a companion paper, molecular details of immune responses in a pig-to-human xenotransplantation are identified through dense longitudinal multi-omics profiling of the xenograft and the host recipient, across the 61-day procedure.

    • Eloi Schmauch
    • Brian D. Piening
    • Brendan J. Keating
    Research
    Nature
    P: 1-13