Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1083 results
Advanced filters: Author: X. L. Lu Clear advanced filters
  • Analysis of samples from the asteroid Ryugu provide evidence of late fluid flow in a carbonaceous asteroid, indicating that such bodies may have retained two to three times more water than previously thought.

    • Tsuyoshi Iizuka
    • Takazo Shibuya
    • Hisayoshi Yurimoto
    Research
    Nature
    Volume: 646, P: 62-67
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • The CMS Collaboration reports the measurement of the spin, parity, and charge conjugation properties of all-charm tetraquarks, exotic fleeting particles formed in proton–proton collisions at the Large Hadron Collider.

    • A. Hayrapetyan
    • V. Makarenko
    • A. Snigirev
    ResearchOpen Access
    Nature
    Volume: 648, P: 58-63
  • Protein motion in crowded environments governs cellular transport and reaction rates. Here, the authors use megahertz X-ray Photon Correlation Spectroscopy to reveal anomalous diffusion of ferritin, linking hydrodynamic and direct interactions to cage-trapping at microsecond time scales.

    • Anita Girelli
    • Maddalena Bin
    • Fivos Perakis
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • The study of isotopes away from the beta stability valley is crucial for the understanding of nuclear structure, especially for neutron-deficient heavy nuclei. Here, the authors report the observation of the alpha-decay isotope 210-protactinium (Pa), extending the alpha-decay systematics of underexplored regions of the nuclides chart.

    • M. M. Zhang
    • J. G. Wang
    • S. G. Zhou
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • Model thiophene-decorated nickel porphyrins are synthesized to examine how sulfur promotes CO2-to-CO conversion and tandem CO2-to-C2 product conversion in electrocatalytic CO2 reduction. Combined theoretical and experimental analyses show that thiophene substituents generate a ligand hole character that modulates the nickel-centred electronic structure, enhancing overall catalytic performance.

    • Yi-Hsuan Lu
    • Yu-Jhih Shen
    • Sung-Fu Hung
    Research
    Nature Synthesis
    P: 1-10
  • This study elucidates nanoscopic strain evolution in single-crystal Ni-rich positive electrodes, demonstrating that mechanical failure results from lattice distortions, and redefines the roles of cobalt and manganese in battery cycling stability.

    • Jing Wang
    • Tongchao Liu
    • Khalil Amine
    Research
    Nature Nanotechnology
    P: 1-11
  • Eight decades of forest plot monitoring show a pervasive increase in tree mortality across Australia’s forest biomes driven by climate change, jeopardizing their role as enduring carbon sinks.

    • Ruiling Lu
    • Laura J. Williams
    • Belinda E. Medlyn
    Research
    Nature Plants
    Volume: 12, P: 62-73
  • Precise editing of DNA methylation has emerged as a promising tool in disease biology but most applications are limited to in vitro systems. Here, we develop two transgenic mouse lines harboring an inducible dCas9-DNMT3A or dCas9-TET1 editor to enable tissue-specific DNA methylation editing in vivo.

    • Richard Pan
    • Jingwei Ren
    • X. Shawn Liu
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Quantum gates in 2D ion crystals are more challenging than in 1D. Here, the authors use their 2D ion trap platform and acousto-optical deflectors to demonstrate a 2-qubit gate that can stand the ion micromotion in such configuration.

    • Y.-H. Hou
    • Y.-J. Yi
    • L.-M. Duan
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • Immune interactions are complex, dynamic and difficult to capture using static imaging modalities on in vitro or ex vivo tissue cultures. In this Review, the authors discuss techniques for in vivo imaging of the immune system including one-photon near-infrared II fluorescence and two-photon and multiphoton microscopy for longitudinal tracking of immune cells, as well as a translational path that integrates near-infrared II, positron-emission tomography or MRI and artificial intelligence-enabled analysis towards quantitative, clinically compatible, multimodal immuno-imaging.

    • Yingying Jiang
    • Tianbing Ren
    • Hongjie Dai
    Reviews
    Nature Reviews Bioengineering
    P: 1-21
  • Current lithium-ion batteries still rely heavily on nickel (Ni), whose growing demand raises serious economic and environmental concerns. This work now presents a cathode that delivers longer cycle life than high-Ni chemistry while substantially reducing Ni use.

    • Weiyuan Huang
    • Zengqing Zhuo
    • Tongchao Liu
    Research
    Nature Sustainability
    P: 1-11
  • Lanthanide ions possess similar chemical properties, making their separation from one another challenging. Here the authors show that a tris-tridentate ligand causes high-precision metal ion self-sorting, leading to the selective assembly of tetrahedral M4L4 cages across the lanthanide series.

    • Xiao-Zhen Li
    • Li-Peng Zhou
    • Qing-Fu Sun
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-10
  • Thermal stability remains a key challenge for organic photovoltaics. Qin et al. now propose a strategy that stabilizes multiple components of the devices, enhancing their resilience under damp heat and thermal cycling conditions.

    • Jian Qin
    • Qian Xi
    • Chang-Qi Ma
    Research
    Nature Energy
    Volume: 10, P: 1439-1449
  • A mechano-intelligent transmission mechanism based on the slipknot delivers precise force signals for clinical practice and robotic operations such as minimally invasive surgery and tendon-driven robotics.

    • Yaoting Xue
    • Jiasheng Cao
    • Xiujun Cai
    ResearchOpen Access
    Nature
    Volume: 647, P: 889-896
  • AQP3 facilitates the transport of hydrogen peroxide. Here the authors report cryo-EM structures of AQP3 under different pH and in the presence of hydrogen peroxide. Along with molecular dynamics simulations, the study reveals how AQP3 maintains redox balance in endocrine pancreas.

    • Peng Huang
    • Raminta Venskutonytė
    • Karin Lindkvist-Petersson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Trivalent lanthanides possess similar chemical properties, making their separation from one another challenging. Here, Wang and colleagues demonstrate that their subtle chemical differences can be greatly amplified during borate crystallization, leading to a low cost and highly efficient separation strategy.

    • Xuemiao Yin
    • Yaxing Wang
    • Shuao Wang
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-8
  • The quark structure of the f0(980) hadron is still unknown after 50 years of its discovery. Here, the CMS Collaboration reports a measurement of the elliptic flow of the f0(980) state in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV, providing strong evidence that the state is an ordinary meson.

    • A. Hayrapetyan
    • A. Tumasyan
    • A. Zhokin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • A new artificial intelligence model, DeepSeek-R1, is introduced, demonstrating that the reasoning abilities of large language models can be incentivized through pure reinforcement learning, removing the need for human-annotated demonstrations.

    • Daya Guo
    • Dejian Yang
    • Zhen Zhang
    ResearchOpen Access
    Nature
    Volume: 645, P: 633-638
  • While Bell inequalities have been violated several times—mostly in photonic systems—their violations within particle physics experiments are less explored. Here, the BESIII Collaboration showcases Bell-violating nonlocal correlations between entangled hyperon pairs.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • The death of massive stars has traditionally been discovered by explosive events in the gamma-ray band. Liu et al. show that the sensitive wide-field monitor on board Einstein Probe can reveal a weak soft-X-ray signal much earlier than gamma rays.

    • Y. Liu
    • H. Sun
    • X.-X. Zuo
    Research
    Nature Astronomy
    Volume: 9, P: 564-576
  • Laser-plasma accelerators can produce giga electronvolt energy electrons over centimetre scales, but their properties depend on the initial injection into the accelerator. Corde et al.study self-injection of electrons into the plasma wake and identify both transverse and longitudinal injection mechanisms.

    • S. Corde
    • C. Thaury
    • V. Malka
    Research
    Nature Communications
    Volume: 4, P: 1-7
  • Quantifying the degree of correlation required to drive a Mott insulator transition is a crucial aspect in understanding and manipulating correlated electrons. Here, the authors introduce a thallium-based cuprate system and use resonant inelastic X-ray scattering, combined with Hubbard-Heisenberg modeling, to establish a universal relation between electron interactions and magnon dispersion, suggesting optimal superconductivity at intermediate correlation strength.

    • I. Biało
    • Q. Wang
    • J. Chang
    ResearchOpen Access
    Communications Materials
    P: 1-7
  • Aromaticity predicts the existence of the benzene tetra-anion, although it has not been unambiguously observed. Here, the authors have synthesized a tetra-anionic substituted benzene as a ligand and characterize the six-carbon, 10 π-electron system by structural, spectroscopic and theoretical techniques.

    • Wenliang Huang
    • Florian Dulong
    • Paula L. Diaconescu
    Research
    Nature Communications
    Volume: 4, P: 1-7
  • The semileptonic decay channels of the Λc baryon can give important insights into weak interaction, but decay into a neutron, positron and electron neutrino has not been reported so far, due to difficulties in the final products’ identification. Here, the BESIII Collaboration reports its observation in e+e- collision data, exploiting machine-learning-based identification techniques.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Cooperative paramagnetism refers to a strongly correlated state without long range magnetic order that occurs in frustrated magnetic systems between the Neel temperature and Curie-Weiss temperature. Here, using resonant elastic magnetic and inelastic x-ray scattering, Terilli et al find a spectrally sharp gapped magnetic excitations that persists above the Neel temperature in Y2Ir2O7, implying a cooperative paramagnetic phase.

    • Michael Terilli
    • Xun Jia
    • Jak Chakhalian
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • By controlling the flow or composition of liquids, optofluidics provides numerous possibilities for devices, and so has great potential for transformation optics. Here, a multi-mode optofluidic waveguide is presented, which manipulates light to produce controllable chirped focussing and interference.

    • Y. Yang
    • A.Q. Liu
    • N.I. Zheludev
    ResearchOpen Access
    Nature Communications
    Volume: 3, P: 1-7
  • Thermal lepton pairs are ideal probes for the temperature of quark-gluon plasma. Here, the STAR Collaboration uses thermal electron-positron pair production to measure quark-gluon plasma average temperature at different stages of the evolution.

    • B. E. Aboona
    • J. Adam
    • M. Zyzak
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Investigating the inner structure of baryons is important to further our understanding of the strong interaction. Here, the BESIII Collaboration extracts the absolute value of the ratio of the electric to magnetic form factors and its relative phase for e + e − → J/ψ → ΛΣ decays, enhancing the signal thanks to the vacuum polarisation effect at the J/ψ peak.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Finite momentum superconducting pairing refers to a class of unconventional superconducting states where Cooper pairs acquire a non-zero momentum. Here the authors report a new superconducting state in bulk 4Hb-TaS₂, where magnetic fields induce finite momentum pairing via magnetoelectric coupling.

    • F. Z. Yang
    • H. D. Zhang
    • H. Miao
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Entanglement was observed in top–antitop quark events by the ATLAS experiment produced at the Large Hadron Collider at CERN using a proton–proton collision dataset with a centre-of-mass energy of √s  = 13 TeV and an integrated luminosity of 140 fb−1.

    • G. Aad
    • B. Abbott
    • L. Zwalinski
    ResearchOpen Access
    Nature
    Volume: 633, P: 542-547
  • Experiments under upper-tropospheric conditions map the chemical formation of isoprene oxygenated organic molecules (important molecules for new particle formation) and reveal that relative radical ratios control their composition

    • Douglas M. Russell
    • Felix Kunkler
    • Joachim Curtius
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • A connectome of the right optic lobe from a male fruitfly is presented together with an extensive collection of genetic drivers matched to a comprehensive neuron-type catalogue.

    • Aljoscha Nern
    • Frank Loesche
    • Michael B. Reiser
    ResearchOpen Access
    Nature
    Volume: 641, P: 1225-1237
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Opsins are responsible for light perception across the animal kingdom. Here the authors show cryo-EM structures of an activated bistable opsin, shedding light on the activation mechanism of this class of bidirectional photoswitches.

    • Oliver Tejero
    • Filip Pamula
    • Ching-Ju Tsai
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13