Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brown fat ATP-citrate lyase links carbohydrate availability to thermogenesis and guards against metabolic stress

Abstract

Brown adipose tissue (BAT) engages futile fatty acid synthesis–oxidation cycling, the purpose of which has remained elusive. Here, we show that ATP-citrate lyase (ACLY), which generates acetyl-CoA for fatty acid synthesis, promotes thermogenesis by mitigating metabolic stress. Without ACLY, BAT overloads the tricarboxylic acid cycle, activates the integrated stress response (ISR) and suppresses thermogenesis. ACLY’s role in preventing BAT stress becomes critical when mice are weaned onto a carbohydrate-plentiful diet, while removing dietary carbohydrates prevents stress induction in ACLY-deficient BAT. ACLY loss also upregulates fatty acid synthase (Fasn); yet while ISR activation is not caused by impaired fatty acid synthesis per se, deleting Fasn and Acly unlocks an alternative metabolic programme that overcomes tricarboxylic acid cycle overload, prevents ISR activation and rescues thermogenesis. Overall, we uncover a previously unappreciated role for ACLY in mitigating mitochondrial stress that links dietary carbohydrates to uncoupling protein 1-dependent thermogenesis and provides fundamental insight into the fatty acid synthesis–oxidation paradox in BAT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACLY loss in brown fat causes tissue whitening, cold intolerance and lipid metabolic reprogramming in male mice.
Fig. 2: The BAT mitochondria network and thermogenic programme requires ACLY.
Fig. 3: Beige adipocyte formation also requires ACLY.
Fig. 4: Induced ACLY loss triggers the ISR.
Fig. 5: ACLY’s role in mitigating stress is linked to dietary carbohydrates.
Fig. 6: ACLY prevents TCA cycle overload during thermogenesis.
Fig. 7: BAT Acly;Fasn double knockout rescues thermogenesis independent of DNL and prevents ISR.
Fig. 8: Model of futile FAS–FAO cycling in BAT and the role of ACLY and FASN.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. RNA-seq data are available at the NCBI BioSample Project: PRJNA1151645.

References

  1. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  2. Cohen, P. & Kajimura, S. The cellular and functional complexity of thermogenic fat. Nat. Rev. Mol. Cell Biol. 22, 393–409 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jung, S. M., Sanchez-Gurmaches, J. & Guertin, D. A. Brown adipose tissue development and metabolism. Handb. Exp. Pharmacol. 251, 3–36 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanchez-Gurmaches, J., Hung, C. M. & Guertin, D. A. Emerging complexities in adipocyte origins and identity. Trends Cell Biol. 26, 313–326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Seki, T. et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 608, 421–428 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolfrum, C. & Gerhart-Hines, Z. Fueling the fire of adipose thermogenesis. Science 375, 1229–1231 (2022).

    CAS  PubMed  Google Scholar 

  8. Villarroya, J. et al. New insights into the secretory functions of brown adipose tissue. J. Endocrinol. 243, R19–R27 (2019).

    CAS  PubMed  Google Scholar 

  9. Haley, J. A., Jang, C. & Guertin, D. A. A new era of understanding in vivo metabolic flux in thermogenic adipocytes. Curr. Opin. Genet. Dev. 83, 102112 (2023).

    CAS  PubMed  Google Scholar 

  10. Hankir, M. K. & Klingenspor, M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep. 19, e46404 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. McCormack, J. G. & Denton, R. M. Evidence that fatty acid synthesis in the interscapular brown adipose tissue of cold-adapted rats is increased in vivo by insulin by mechanisms involving parallel activation of pyruvate dehydrogenase and acetyl-coenzyme A carboxylase. Biochem. J. 166, 627–630 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Trayhurn, P. Fatty acid synthesis in mouse brown adipose tissue. The influence of environmental temperature on the proportion of whole-body fatty acid synthesis in brown adipose tissue and the liver. Biochim. Biophys. Acta 664, 549–560 (1981).

    CAS  PubMed  Google Scholar 

  13. Mottillo, E. P. et al. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J. Lipid Res. 55, 2276–2286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanchez-Gurmaches, J. et al. Brown Fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab. 27, 195–209 (2018).

    CAS  PubMed  Google Scholar 

  15. Jung, S. M. et al. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep. 36, 109459 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab. 3, 1608–1620 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, S. et al. ATP-Citrate Lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17, 1037–1052 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guertin, D. A. & Wellen, K. E. Acetyl-CoA metabolism in cancer. Nat. Rev. Cancer 23, 156–172 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, G. et al. Quantitative analysis of metabolic fluxes in brown fat and skeletal muscle during thermogenesis. Nat. Metab. https://doi.org/10.1038/s42255-023-00825-8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trayhurn, P. Fatty acid synthesis in vivo in brown adipose tissue, liver and white adipose tissue of the cold-acclimated rat. FEBS Lett. 104, 13–16 (1979).

    CAS  PubMed  Google Scholar 

  21. Lundgren, P. et al. A subpopulation of lipogenic brown adipocytes drives thermogenic memory. Nat. Metab. 5, 1691–1705 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. de Jong, J. M. A. et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat. Metab. 1, 830–843 (2019).

    PubMed  Google Scholar 

  23. Martinez Calejman, C. et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat. Commun. 11, 575 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandez, S. et al. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep. 27, 2772–2784 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Seale, P. Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes 64, 2369–2375 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shapira, S. N. & Seale, P. Transcriptional control of brown and beige fat development and function. Obesity 27, 13–21 (2019).

    CAS  PubMed  Google Scholar 

  27. Angueira, A. R. et al. Early B cell factor activity controls developmental and adaptive thermogenic gene programming in adipocytes. Cell Rep. 30, 2869–2878 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, S. et al. Mitochondrial integrated stress response controls lung epithelial cell fate. Nature 620, 890–897 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuliana, A. et al. Endoplasmic reticulum stress impaired uncoupling protein 1 expression via the suppression of peroxisome proliferator-activated receptor γ binding activity in mice beige adipocytes. Int. J. Mol. Sci. 20, 274 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Sustarsic, E. G. et al. Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metab. 28, 159–174 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Souza-Mello, V., Bond, L. M., Burhans, M. S. & Ntambi, J. M. Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PLoS ONE 13, e0205726 (2018).

    Google Scholar 

  33. Lu, Y. et al. Mitophagy is required for brown adipose tissue mitochondrial homeostasis during cold challenge. Sci. Rep. 8, 8251 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Wikstrom, J. D. et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418–436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rahbani, J. F. et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590, 480–485 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mick, E. et al. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. Elife 9, e49178 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guilherme, A. et al. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol. Metab. 16, 116–125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Romanelli, S. M. et al. BAd-CRISPR: Inducible gene knockout in interscapular brown adipose tissue of adult mice. J. Biol. Chem. 297, 101402 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Holman, C. D. et al. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. eLife 12, RP87756 (2024).

    PubMed  PubMed Central  Google Scholar 

  40. Guilherme, A. et al. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program. Cell Rep. 42, 112488 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Quek, L. E. et al. Dynamic 13C flux analysis captures the reorganization of adipocyte glucose metabolism in response to insulin. iScience 23, 100855 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jung, S. M. et al. Non-canonical mTORC2 signaling regulates brown adipocyte lipid catabolism through SIRT6-FoxO1. Mol. Cell 75, 807–822 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kazak, L. et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc. Natl Acad. Sci. USA 114, 7981–7986 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang, C. F. et al. Brown adipose tissue CoQ deficiency activates the integrated stress response and FGF21-dependent mitohormesis. EMBO J. 43, 168–195 (2024).

    PubMed  PubMed Central  Google Scholar 

  45. Kim, W. et al. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD+ recycling. Cell Metab. 29, 856–870 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma, A. K., Khandelwal, R. & Wolfrum, C. Futile cycles: emerging utility from apparent futility. Cell Metab. 36, 1184–1203 (2024).

    CAS  PubMed  Google Scholar 

  47. Kazak, L. Promoting metabolic inefficiency for metabolic disease. iScience 26, 107843 (2023).

    PubMed  PubMed Central  Google Scholar 

  48. Brownstein, A. J., Veliova, M., Acin-Perez, R., Liesa, M. & Shirihai, O. S. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev. Endocr. Metab. Disord. 23, 121–131 (2022).

    CAS  PubMed  Google Scholar 

  49. Chen, K. Y. et al. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J. Biol. Chem. 295, 1926–1942 (2020).

    CAS  PubMed  Google Scholar 

  50. Carpentier, A. C., Blondin, D. P., Haman, F. & Richard, D. Brown adipose tissue—a translational perspective. Endocr. Rev. 44, 143–192 (2023).

    PubMed  Google Scholar 

  51. Yu, S. Y., Luan, Y., Dong, R., Abazarikia, A. & Kim, S. Y. Adipose tissue wasting as a determinant of pancreatic cancer-related cachexia. Cancers 14, 4754 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weber, B. Z. C., Arabaci, D. H. & Kir, S. Metabolic reprogramming in adipose tissue during cancer cachexia. Front. Oncol. 12, 848394 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fasshauer, M. et al. Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol. Cell. Biol. 21, 319–329 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hung, C. M. et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 8, 256–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Quiros, P. M., Goyal, A., Jha, P. & Auwerx, J. Analysis of mtDNA/nDNA ratio in mice. Curr. Protoc. Mouse Biol. 7, 47–54 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the \(2({{-\Delta\Delta C_{\rm{T}}}\atop})\) method. Methods 25, 402–408 (2001).

    CAS  PubMed  Google Scholar 

  57. Wallace, M. et al. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat. Chem. Biol. 14, 1021–1031 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Haley, J. A. et al. Decoupling of Nrf2 expression promotes mesenchymal state maintenance in non-small cell lung cancer. Cancers 11, 1488 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Simons, B. et al. Shotgun lipidomics by sequential precursor ion fragmentation on a hybrid quadrupole time-of-flight mass spectrometer. Metabolites 2, 195–213 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lynes, M. D. et al. Cold-Activated lipid dynamics in adipose tissue highlights a role for cardiolipin in thermogenic metabolism. Cell Rep. 24, 781–790 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Frey, A. J. et al. LC-quadrupole/orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and 13C-isotopic labeling of acyl-coenzyme A thioesters. Anal. Bioanal. Chem. 408, 3651–3658 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Snyder, N. W. et al. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture. Anal. Biochem. 474, 59–65 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Melamud, E., Vastag, L. & Rabinowitz, J. D. Metabolomic analysis and visualization engine for LC–MS data. Anal. Chem. 82, 9818–9826 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on orbitraps. Anal. Chem. 89, 5940–5948 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Millard, P. et al. IsoCor: isotope correction for high-resolution MS labeling experiments. Bioinformatics 35, 4484–4487 (2019).

    CAS  PubMed  Google Scholar 

  66. Yukselen, O., Turkyilmaz, O., Ozturk, A. R., Garber, M. & Kucukural, A. DolphinNext: a distributed data processing platform for high throughput genomics. BMC Genomics 21, 310 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the UMass Chan Morphology Core, Mouse Facility, EM Facility, and members of the laboratories of D.A.G., K.E.W., N.W.S. and C.J. for helpful discussions. This work was funded by R01DK116005, R01DK127175 and R01DK094004 to D.A.G. M.D.L. was supported by National Institutes of Health fellowship K01DK111714.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.A.G., E.D.K., C.M.C. and K.E.W. Methodology: E.D.K., C.M.C., J.A.H., J.R.P., J.B.S., O.A., C.M.M., M.D.L., C.J. and N.W.S. Investigation: E.D.K., C.M.C., J.A.H., M.E.K., H.L., M.G., Q.C., H.L.P., H.A., A.B., S.M.F., T.-Y.L., A.L., J.P., S.T., C.R.G., P.V., C.F.S., O.A. and M.D.L. Visualization: E.D.K. and D.A.G. Supervision: D.A.G., K.E.W., N.W.S. and C.J. Writing: E.D.K. and D.A.G.

Corresponding author

Correspondence to David A. Guertin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Edward Chouchani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ACLY loss in Brown Fat Causes Tissue Whitening and Cold Intolerance in Male Mice.

a. Body weight of the AclyBATKO male mice. n=21 C, 16 KO. b. Adipose tissue weights of the AclyBATKO male mice. *p= 0.0246, *p= 0.0234. n=11 C, 8 KO. c. Lean tissue weights of the AclyBATKO male mice. n=11 C, 8 KO. d. ‘Survival curve’ for cold exposure experiment, where mice maintain body temperature above 30 °C, remain in the cold over the time course of experiment. n=C, 6 KO. e. Dorsal view representative infrared thermography image of heat signature of the iBAT from AclyBATKO mouse and littermate control. f. Body weights of the Acss2BATKO male mice. n=6 C, 6 KO. g. Adipose tissue weights of the Acss2BATKO male mice. n=6 C, 6 KO. h. Lean tissue weights of the Acss2BATKO male mice. n=6 C, 6 KO. i. ‘Survival curve’, how many mice remain in the cold over the time course of experiment. n=6 C, 6 KO. j. Acyl CoA levels measurements in the Acss2BATKO male mice BAT. **p= 0.0052, *p= 0.0170. n=9 C, 10 KO. Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test.

Extended Data Fig. 2 ACLY loss in Brown Fat Causes Tissue Whitening and Cold Intolerance in Female Mice.

a. Representative H&E of the iBAT from AclyBATKO female mouse and littermate control. Scale bar 50um. Clear consistent phenotype across n=3 mice. b. Body weight of the AclyBATKO female mice. n=7 C, 11 KO. c. Adipose tissue weights of the AclyBATKO female mice. *p= 0.0232. n=7 C, 11 KO. d. Lean tissue weights of the AclyBATKO female mice. n=7 C, 11 KO. e. Rectal temperatures of the AclyBATKO female mice and littermate controls during cold exposure (4 °C). n=8 C, 8 KO. f. ‘Survival curve’, how many mice maintain body temperature above 30 °C, remain in the cold over the time course of experiment. n=8 C, 8 KO. g. Representative H&E of the iBAT from Acss2BATKO female mouse and littermate control. Scale bar 50um. Consistent across n=6 mice. h. Body weight of the Acss2BATKO female mice. n=5 C, 6 KO. i. Adipose tissue weights of the Acss2BATKO female mice. n=5 C, 6 KO. j. Lean tissue weights of the Acss2BATKO female mice. n=5 C, 6 KO. k. Rectal temperatures of the Acss2BATKO female mice and littermate controls during cold exposure (4 °C). n=4 C, 5 KO. l. ‘Survival curve’, how many mice maintain body temperature above 30 °C, remain in the cold over the time course of experiment. n=4 C, 5 KO. Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test.

Extended Data Fig. 3 BAT ACLY Loss Broadly Impairs Metabolism.

a. Lipidomics analysis of DAG in the AclyBATKO mice BAT. ***p= 0.0007. n=9 C, 14 KO. b. Lipidomics analysis of TAG in the AclyBATKO mice BAT. n=9 C, 14 KO. c. Lipidomics analysis of CE in the AclyBATKO mice BAT. **p= 0.0035. n=9 C, 14 KO. d. Lipidomics analysis of DAG degree of saturation in the AclyBATKO mice BAT. ***p= 0.0001, **p= 0.0002. n=9 C, 14 KO. e. Lipidomics analysis of TAG degree of saturation in the AclyBATKO mice BAT. **** <0.0001, ***p= 0.0001, ***p= 0.0002. n=9 C, 14 KO. f. D2O labeling of newly synthesized palmitate in the AclyBATKO mice BAT and their littermates. *p= 0.0163. n=8 C, 8 KO. g. Palmitate abundance in BAT of AclyBATKO mice and littermate controls. **p= 0.0087. n=8 C, 8 KO. h. D2O enrichment in plasma of AclyBATKO mice and littermate controls. n=8 C, 8 KO. i. 3H-2-deoxy-glucose uptake assay into interscapular BAT, subscapular BAT, SAT, Quad and Liver of the AclyBATKO mice after 30 min at 4 °C. ***p= 0.0003, ***p= 0.0004. n=4 C, 5 KO. j. RT-PCR analysis of Glut1 and Glut4 in the AclyBATKO mice BAT. **p= 0.0015. n=6 C, 6 KO. k. RT-PCR analysis of cd36 and lpl in the AclyBATKO mice BAT. ***p= 0.0001, **p= 0.0072. n=6 C, 6 KO. Panels A-K: grey bar (C), orange bar (AclyBATKO). Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test.

Extended Data Fig. 4 The Thermogenic Gene Program Requires ACLY.

a. Western blot of siACLY treated brown mature adipocytes. n=2 samples, result has been replicated. b. Seahorse Mito Stress Test OCR measurements of siACLY treated brown mature adipocytes. ****p <0.0001. n=30NT, n=30 siACLY wells, result has been replicated. c. Seahorse Mito Stress Test ECAR measurements of siACLY treated brown mature adipocytes. ****p <0.0001. n=30NT, n=30 siACLY wells, result has been replicated. d. Mitochondria/Nuclear DNA ratio in the siACLY treated brown mature adipocytes. n=6 C, 6 KO. e. RT-PCR analysis of Acly, Ucp1, Cycs and Pgc1a in the siRNA treated brown mature adipocytes.*p=0.0251, ***p= 0.0005, *p=0.0004, ***p=0.0373. n=4 C, 4 KO. f. Western blot of siACLY treated brown mature adipocytes, chromatin and WCL (whole cell lysate). n=3 samples. g. Western blot of ACLY inhibitor (BMS-303141) treated brown mature adipocytes, chromatin and WCL (whole cell lysate). n=2 samples. Panels B-E: grey bar (NT), orange bar (siAcly). Panels B, C: black line (NT), orange line (siAcly). Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test.

Source data

Extended Data Fig. 5 Induced ACLY loss triggers the Integrated Stress Response and Changes in Mitochondrial Processes.

a. Body weight of the AclyBATiKO male mice. n=8 C, 8 KO. b. Adipose tissue weights of the AclyBATiKO male mice. ****p=<0.0001. n=8 C, 8 KO. c. Lean tissue weights of the AclyBATiKO male mice. n=8 C, 8 KO. d. Gene Ontology Term analysis of the AclyBATiKO male mice RNAseq. e. RT-PCR analysis of iBAT from AclyBATiKO male mice and littermate controls. **p=0.0020, **p=0.0031, *p=0.0205, ***p<0.0001, *p=0.0380, *p=0.0254 n=5 C, 5 KO. f. Western blot of the AclyBATiKO male mice. N=4 individual mice.Panels A-D: grey bar (C), orange bar (AclyBATiKO). Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test.

Source data

Extended Data Fig. 6 ACLY's Role in Mitigating Stress is Linked to Dietary Carbohydrates.

a. RT-PCR analysis of Atf4 in the AclyBATKO mice 2 and 4 week of age. *p=0.0496. 2W: n=5 C, 5 KO; 4W: n=6 C, 6 KO. b. RT-PCR analysis of Ucp1 in the AclyBATKO mice 2 and 4 week of age. *p=0.0106. c. RT-PCR analysis of Acss2 in the AclyBATKO mice 2 and 4 week of age. *p=0.0110, p*=0.0110, *p=0.0145. d. RT-PCR analysis of Fasn in the AclyBATKO mice 2 and 4 week of age.****p<0.0001, ***p=0.0001. e. RT-PCR analysis of Chrebpa in the AclyBATKO mice 2 and 4 week of age. ****p<0.0001, ****p<0.0001. f. RT-PCR analysis of Chrebpb in the AclyBATKO mice 2 and 4 week of age. *p=0.0434, *p=0.0434, ****p<0.0001, ****p<0.0001. Panels A-F: grey bar (C), orange bar (AclyBATKO). Data are mean ± s.e.m. Group differences determined via one-tailed ANOVA with Tukey’s post hoc.

Extended Data Fig. 7 ACLY Prevents TCA Cycle Overload During Thermogenesis.

a. Serum glucose fractional labeling AclyBATKO and Acly,FasnBATKO mice. b. Serum glucose relative abundance AclyBATKO and Acly,FasnBATKO mice. 15 minutes: AclyBATKO n=6C, 9 KO; Acly,FasnBATKO n=5C, 5 KO. 30 minutes: AclyBATKO n=6C, 9 KO; Acly,FasnBATKO n=4, 5 KO.

Extended Data Fig. 8 FasnBATKO male and female mice.

a. Representative H&E of the iBAT from FasnBATKO male and female mouse and littermate control. Scale bar 50um. Has been confirmed in n=3 males, n=5 females. b. Adipose tissue weights of the FasnBATKO male mice. n=6 C, 6 KO. Adipose tissue weights of the FasnBATKO female mice. n=6 C, 6 KO. c. Western blot of the FasnBATKO male and female mice. d. Rectal temperatures of the FasnBATKO male mice and littermate controls during cold exposure (4 °C). n=7 C, 7 KO. Rectal temperatures of the FasnBATKO female mice and littermate controls during cold exposure (4 °C). n=8 C, 6 KO. e. Mitochondria/Nuclear DNA ratio in the FasnBATKO mice BAT. n=6 C, 6 KO. f. CoQ levels in the FasnBATKO mice BAT. n=9 C, 8 KO. Panels B, E, F: grey bars (C), blue bars (FasnBATKO). Panel D: black lines (C), blue lines (FasnBATKO). Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test.

Source data

Extended Data Fig. 9 Acly,Acss2BATDKO male and female mice.

a. Representative H&E of the iBAT from Acly,Acss2BATKO male mouse and littermate control. Scale bar 50um. Clear consistent phenotype, confirmed n=6 mice. b. Western blot of the Acly,Acss2BATKO male mouse BAT. c. Adipose tissue weights of the Acly,Acss2BATKO male mice. *p=0.0291. n=5 C, 6 KO. d. Lean tissue weights of the Acly,Acss2BATKO male mice. n=5 C, 6 KO. e. Body weight of the Acly,Acss2BATKO male mice. n=5 C, 6 KO. f. Rectal temperatures of the Acly,Acss2BATKO male mice and littermate controls during cold exposure (4 °C), left. ‘Survival curve’, how many mice remain in the cold over the time course of experiment, right. n=7 C, 8 KO. g. Mitochondria/Nuclear DNA ratio in the Acly,Acss2BATKO male mice BAT. **p=0.0060. n=5 C, 6 KO. h. Representative H&E of the iBAT from Acly,Acss2BATKO female mouse and littermate control. Scale bar 50um. Clear consistent phenotype, confirmed in n=4 mice. i. Adipose tissue weights of the Acly,Acss2BATKO female mice. n=6 C, 5 KO. j. Lean tissue weights of the Acly,Acss2BATKO female mice. n=6 C, 5 KO. k. Body weight of the Acly, Acss2BATKO female mice. n=6 C, 5 KO. Panels C-E,G: grey bars (C), teal (Acly,Acss2BATKO) males. Panels I-K: grey bars (C), blue bars (Acly,Acss2BATKO) females. Panels F: black lines (C), teal lines (Acly,Acss2BATKO). Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test.

Source data

Extended Data Fig. 10 BAT Acly;Fasn Double Knockout Rescues Thermogenesis Independent of DNL and Prevents ISR.

a. Body weight of the Acly,FasnBATKO male mice. n=5 C, 5 KO. b. Adipose tissue weights of the Acly,FasnBATKO male mice. n=5 C, 5 KO. c. Relative labeled abundance of palmitate in BAT of AclyBATKO,Acss2BATKO(n=11C, 5KO and 5KO), FasnBATKO(n=6C, 6KO),Acly/FasnBATKO(n=6C, 6KO)mice and littermate controls. *p=0.0404, ***p= 0.0007, **p=0.0035. d. Representative H&E of the iBAT from AclyBATiKO and Acly,FasnBATiKO male mouse and littermate control. Scale bar 50um. Has been confirmed in n=3 mice each. e. Body weight of the Acly,FasnBATiKO male mice. n=6 C, 6 KO. f. Adipose tissue and lean tissues weights of the Acly,FasnBATiKO male mice. n=6 C, 6 KO. g. Principal Component Analysis (PCA) plot of RNAseq from AclyBATiKO and Acly,FasnBATiKO male mouse and littermate controls. h. Heat map relative abundance of Immune Response genes in RNAseq of AclyBATiKO and Fasn,AclyBATiKO BAT. Panel G-H: light grey (C), orange bar (AclyBATiKO), dark grey (C), light purple bar (Fasn,AclyBATiKO). Data are mean ± s.e.m. Statistical analysis unpaired two-tailed Student’s t-test. Group differences determined via one-tailed ANOVA with Tukey’s post hoc.

Supplementary information

Reporting Summary

Supplementary Table 1

Primer sequences.

Supplementary Table 2

GO terms for Figs. 4c–f, 7j and Extended Data Fig. 10h.

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 7

Unprocessed western blots.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 9

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobkina, E.D., Calejman, C.M., Haley, J.A. et al. Brown fat ATP-citrate lyase links carbohydrate availability to thermogenesis and guards against metabolic stress. Nat Metab 6, 2187–2202 (2024). https://doi.org/10.1038/s42255-024-01143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-024-01143-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing