Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 158 results
Advanced filters: Author: X. S. Miao Clear advanced filters
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • MnBi2Te4 has an appealing combination of topological bands and magnetic ordering. While chemical doping with Sb can be used to tune these properties, it typically comes with an increase in defect density. Here, Chen, Wang, Li, Duan, and coauthors demonstrate a defect engineering approach that preserves the topological and magnetic properties of Mn(Bi1-xSbx)2Te4.

    • Haonan Chen
    • Jiayu Wang
    • Cheng Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • It remains to be seen if high-Tc superconductors rely on similar Fermi-surface instabilities as their BCS counterparts. Miao et al. study the high-Tc compound LiFe1−xCoxAs with high-resolution ARPES and find a robust gap with Co doping that suggests the order parameter is not tied to such instabilities.

    • H. Miao
    • T. Qian
    • H. Ding
    Research
    Nature Communications
    Volume: 6, P: 1-6
  • The CMS Collaboration reports the measurement of the spin, parity, and charge conjugation properties of all-charm tetraquarks, exotic fleeting particles formed in proton–proton collisions at the Large Hadron Collider.

    • A. Hayrapetyan
    • V. Makarenko
    • A. Snigirev
    ResearchOpen Access
    Nature
    Volume: 648, P: 58-63
  • Here, the authors develop an integrated mass spectrometry-based strategy that allows metabolic biomarker discovery based on nanoliter-scale biofluids in seconds. Biomarkers of diabetic cataracts are detected in trace ocular fluids with high diagnostic performance revealed to have and anti-cataract activity.

    • Ziheng Qi
    • Miao Wang
    • Jingjing Wan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • A mechano-intelligent transmission mechanism based on the slipknot delivers precise force signals for clinical practice and robotic operations such as minimally invasive surgery and tendon-driven robotics.

    • Yaoting Xue
    • Jiasheng Cao
    • Xiujun Cai
    ResearchOpen Access
    Nature
    Volume: 647, P: 889-896
  • The nature of unconventional charge density wave in kagome metals is currently under intense debate. Here the authors report the coexistence of the 2 × 2 × 1 charge density wave in the kagome sublattice and the Sb 5p-electron assisted 2 × 2 × 2 charge density waves in CsV3Sb5.

    • Haoxiang Li
    • G. Fabbris
    • H. Miao
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • Oxide memristors exhibit noise in excess of 2–4 orders of magnitude above the baseline at quantized conductance states. Here, the authors measure anomalous electrical noise at these states in tantalum oxide memristors and relate it to thermally-activated atomic fluctuations by numerical simulations.

    • Wei Yi
    • Sergey E. Savel'ev
    • R. Stanley Williams
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • The lack of reliable coating methods for amorphous zeolitic imidazolate framework (aZIF) materials hinders their development for applications such as photolithography and separation membranes. Supported by computational fluid dynamics modeling, the authors develop a spin-coating technique to deposit aZIF films from dilute precursors and demonstrate their wafer-scale use in advanced lithographic processes.

    • Yurun Miao
    • Shunyi Zheng
    • Michael Tsapatsis
    Research
    Nature Chemical Engineering
    Volume: 2, P: 594-607
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • The understanding of charge density wave (CDW) correlations in cuprate superconductors remains hampered due to the lack of scattering phase information. Here, Chen et al. discover a reproducible CDW domain memory effect upon repeated cycling to temperatures well above the CDW ordering temperature.

    • X. M. Chen
    • C. Mazzoli
    • I. K. Robinson
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • The interplay between magnetism and charge density wave in the kagome magnet FeGe is under debate. By using elastic and inelastic X-ray scattering, angle-resolved photoemission spectroscopy, and first principles calculations, Miao et al. propose that the charge density wave is stabilized by spin-phonon coupling.

    • H. Miao
    • T. T. Zhang
    • H. N. Lee
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-8
  • Finite momentum superconducting pairing refers to a class of unconventional superconducting states where Cooper pairs acquire a non-zero momentum. Here the authors report a new superconducting state in bulk 4Hb-TaS₂, where magnetic fields induce finite momentum pairing via magnetoelectric coupling.

    • F. Z. Yang
    • H. D. Zhang
    • H. Miao
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • Tissue-specific mRNA or gene editing machinery delivery is achieved with lipid nanoparticles containing peptides with specific sequences, which tune the protein corona of the particles by mechanical optimization of peptide–protein binding affinities.

    • Tie Chang
    • Yifan Zheng
    • Yue Shao
    Research
    Nature Materials
    Volume: 25, P: 146-159
  • The quark structure of the f0(980) hadron is still unknown after 50 years of its discovery. Here, the CMS Collaboration reports a measurement of the elliptic flow of the f0(980) state in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV, providing strong evidence that the state is an ordinary meson.

    • A. Hayrapetyan
    • A. Tumasyan
    • A. Zhokin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Colour code on a superconducting qubit quantum processor is demonstrated, reporting above-breakeven performance and logical error scaling with increased code size by a factor of 1.56 moving from distance-3 to distance-5 code.

    • N. Lacroix
    • A. Bourassa
    • K. J. Satzinger
    ResearchOpen Access
    Nature
    Volume: 645, P: 614-619
  • The selective cleavage of inert C(sp3)-C(sp3) bonds and their subsequent functionalization is an important goal in synthetic organic chemistry. Here, the authors developed consecutive C–C bond cleavage from stable trisubstituted acids via photocatalysis and copper catalysis.

    • Ruining Li
    • Ya Dong
    • Zhankui Sun
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-12
  • Authors use a high-entropy engineering approach to produce fully amorphous BiTO films by exfoliation and annealing, creating crystalline regions, leading to flexible ceramics with dielectric properties.

    • Lvye Dou
    • Bingbing Yang
    • Yuan-Hua Lin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • In a quantum simulation of a (2+1)D lattice gauge theory using a superconducting quantum processor, the dynamics of strings reveal the transition from deconfined to confined excitations as the effective electric field is increased.

    • T. A. Cochran
    • B. Jobst
    • P. Roushan
    ResearchOpen Access
    Nature
    Volume: 642, P: 315-320
  • Hydrogel materials have emerged as versatile platforms for biomedical applications. Here this group reports an mRNA lipid nanoparticle-incorporated microgel matrix for immune cell recruitment/antigen expression and presentation/cellular interaction thereby eliciting antitumor efficacy with a single dose.

    • Yining Zhu
    • Zhi-Cheng Yao
    • Hai-Quan Mao
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • A hybrid analogue–digital quantum simulator is used to demonstrate beyond-classical performance in benchmarking experiments and to study thermalization phenomena in an XY quantum magnet, including the breakdown of Kibble–Zurek scaling predictions and signatures of the Kosterlitz–Thouless phase transition.

    • T. I. Andersen
    • N. Astrakhantsev
    • X. Mi
    ResearchOpen Access
    Nature
    Volume: 638, P: 79-85
  • The LHCb experiment at CERN has observed significant asymmetries between the decay rates of the beauty baryon and its CP-conjugated antibaryon, thus demonstrating CP violation in baryon decays.

    • R. Aaij
    • A. S. W. Abdelmotteleb
    • G. Zunica
    ResearchOpen Access
    Nature
    Volume: 643, P: 1223-1228
  • Activatable afterglow luminescence nanoprobes reduce unspecific signals and improve imaging fidelity, but their utility is limited by a requisition of donor-acceptor distance (>10 nm) in common biomarker-activatable designs. Here, the authors address this issue by developing organic afterglow luminescence cocktail nanoparticles for acid-activatable upconversion afterglow luminescence imaging.

    • Yue Jiang
    • Min Zhao
    • Qingqing Miao
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Perovskite light emitting diodes suffer from operational stability, showing rapid decay of performance within minutes to hours after turn-on. Here, the authors investigate how the steric and Coulomb interaction of ammonium passivation molecules with varying alkyl chain length can improve device stability by suppressing iodide ion migration.

    • Yuwei Guo
    • Sofia Apergi
    • Ni Zhao
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • The joint analysis of datasets from NOvA and T2K, the two currently operating long-baseline neutrino oscillation experiments, provides new constraints related to neutrino masses and fundamental symmetries.

    • S. Abubakar
    • M. A. Acero
    • S. Zsoldos
    ResearchOpen Access
    Nature
    Volume: 646, P: 818-824
  • This work proposes a wet-chemical etching assisted aberration-enhanced single-pulsed femtosecond laser nanolithography, named “WEALTH”, for manufacturing small-size, large-area, deep holey nanostructures, promising for emerging nanophotonic devices.

    • Zhi Chen
    • Lijing Zhong
    • Jianrong Qiu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Camera trapping is a widely adopted method for monitoring terrestrial mammals. However, a drawback is the amount of human annotation needed to keep pace with continuous data collection. The authors developed a hybrid system of machine learning and humans in the loop, which minimizes annotation load and improves efficiency.

    • Zhongqi Miao
    • Ziwei Liu
    • Wayne M. Getz
    Research
    Nature Machine Intelligence
    Volume: 3, P: 885-895
  • While Bell inequalities have been violated several times—mostly in photonic systems—their violations within particle physics experiments are less explored. Here, the BESIII Collaboration showcases Bell-violating nonlocal correlations between entangled hyperon pairs.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • In 1972, Erich Clar envisioned Clar’s goblet, a polycyclic aromatic hydrocarbon featuring two unpaired electrons that are spin-paired. However, synthesizing it in a solution phase remains challenging. Now a derivative of Clar’s goblet has been prepared in solution, and spin entanglement at the molecular scale has been demonstrated experimentally.

    • Tianyu Jiao
    • Cong-Hui Wu
    • Jishan Wu
    Research
    Nature Chemistry
    Volume: 17, P: 924-932
  • The ultrathin oxide nanosheets obtained through previous approaches usually exhibit amorphism or polycrystallinity, which limit their properties towards electronic devices. Here, the authors synthesize ultrathin antimony oxide single crystals with high dielectric constant (~100) and large breakdown voltage (~5.7 GV m−1).

    • Kena Yang
    • Tao Zhang
    • Lei Fu
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-6
  • Recently, superconductivity near 80 K was observed in La3Ni2O7 under high pressure, but the mechanism is debated. Here the authors report angle-resolved photoemission spectroscopy measurements under ambient pressure, revealing flat bands with strong electronic correlations that could be linked to superconductivity.

    • Jiangang Yang
    • Hualei Sun
    • X. J. Zhou
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • While high-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing, their application is hampered by limited structural diversity and chemical instability. Here, the authors report the synthesis and isolation of a stable nonalternant nanographene with a triplet ground state.

    • Weixiang Zhou
    • Yiyang Fei
    • Junzhi Liu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • The semileptonic decay channels of the Λc baryon can give important insights into weak interaction, but decay into a neutron, positron and electron neutrino has not been reported so far, due to difficulties in the final products’ identification. Here, the BESIII Collaboration reports its observation in e+e- collision data, exploiting machine-learning-based identification techniques.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Valley dependent spin polarization called spin-valley locking appears in absence of magnetism but it is limited to rare examples of transition metal dichalcogenides. Here, the authors report evidence of spin-valley locking and stacked quantum Hall effect in a bulk Dirac semimetal BaMnSb2.

    • J. Y. Liu
    • J. Yu
    • Z. Q. Mao
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-10
  • Investigating the inner structure of baryons is important to further our understanding of the strong interaction. Here, the BESIII Collaboration extracts the absolute value of the ratio of the electric to magnetic form factors and its relative phase for e + e − → J/ψ → ΛΣ decays, enhancing the signal thanks to the vacuum polarisation effect at the J/ψ peak.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • By implementing random circuit sampling, experimental and theoretical results establish the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors.

    • A. Morvan
    • B. Villalonga
    • S. Boixo
    ResearchOpen Access
    Nature
    Volume: 634, P: 328-333
  • CTCF, which is known to play critical role in chromatin structure, undergoes post-translational modifications (PTMs). In this research, O-GlcNAcylation was found to inhibit CTCF binding, impacting 3D chromatin structure, gene expression and cellular development.

    • Xiuxiao Tang
    • Pengguihang Zeng
    • Junjun Ding
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15