Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 2826 results
Advanced filters: Author: X W Li Clear advanced filters
  • Short-circuiting during fast charging through lithium dendrite intrusion into electrolytes is a major challenge in solid-state batteries. Here, using thermally annealed 3-nm-thick Ag coatings, lithium penetration into brittle electrolyte Li6.6La3Zr1.6Ta0.4O12 is inhibited at local current densities of 250 mA cm−2 due to an increase in surface fracture toughness.

    • Xin Xu
    • Teng Cui
    • William C. Chueh
    Research
    Nature Materials
    P: 1-8
  • This study elucidates nanoscopic strain evolution in single-crystal Ni-rich positive electrodes, demonstrating that mechanical failure results from lattice distortions, and redefines the roles of cobalt and manganese in battery cycling stability.

    • Jing Wang
    • Tongchao Liu
    • Khalil Amine
    Research
    Nature Nanotechnology
    P: 1-11
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • Current lithium-ion batteries still rely heavily on nickel (Ni), whose growing demand raises serious economic and environmental concerns. This work now presents a cathode that delivers longer cycle life than high-Ni chemistry while substantially reducing Ni use.

    • Weiyuan Huang
    • Zengqing Zhuo
    • Tongchao Liu
    Research
    Nature Sustainability
    P: 1-11
  • Optical spin orientation of itinerant ferromagnets in twisted MoTe2 homobilayers is demonstrated, enabling control of topological Chern numbers with circularly polarized light.

    • O. Huber
    • K. Kuhlbrodt
    • T. Smoleński
    Research
    Nature
    Volume: 649, P: 1153-1158
  • This study introduces P3T-Net, a pseudo-3D deep learning model that enables accurate and efficient cross-domain transfer of large 3D material images, improving image quality and ensuring image consistency across diverse imaging conditions.

    • Kunning Tang
    • Ryan T. Armstrong
    • Ying Da Wang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Ferromagnetic systems produced by the transition metal doping of semiconductors may be used as components of spintronic devices. Here, a new ferromagnet, Li1+y(Zn1-xMnx)As, is prepared in bulk quantities and shown to have a critical temperature approaching 50 K.

    • Z. Deng
    • C.Q. Jin
    • Y.J. Uemura
    Research
    Nature Communications
    Volume: 2, P: 1-5
  • Van der Waals materials of the MB2T4 family (M = transition metal or rare-earth metal, B = Bi or Sb, T = Te, Se, or S) have attracted interest for their magnetic and topological properties, but their direct synthesis into 2D form remains challenging. Here the authors report a flux-assisted, phase-controlled growth strategy to directly grow six magnetic 2D MB2T4 crystals.

    • Xingguo Wang
    • Shiqi Yang
    • Yongji Gong
    ResearchOpen Access
    Nature Communications
    P: 1-9
  • The authors study a topological insulator (TI) sandwiched between two magnetic TIs. By keeping one of the magnetic TIs insulating, while tuning the other one into a metallic regime, they find half quantized anomalous Hall conductance, a boundary signature consistent with a quantized axion field.

    • Jiayuan Hu
    • Binbin Wang
    • Di Xiao
    ResearchOpen Access
    Nature Communications
    P: 1-8
  • Native crystallographic defects are often introduced during synthesis of battery materials, but has been overlooked. Here, using in situ synchrotron X-ray probes and electron microscopy, the authors have revealed their adverse effect during battery operation.

    • Gui-Liang Xu
    • Xiang Liu
    • Khalil Amine
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-12
  • The CMS Collaboration reports the measurement of the spin, parity, and charge conjugation properties of all-charm tetraquarks, exotic fleeting particles formed in proton–proton collisions at the Large Hadron Collider.

    • A. Hayrapetyan
    • V. Makarenko
    • A. Snigirev
    ResearchOpen Access
    Nature
    Volume: 648, P: 58-63
  • CDK4/6 inhibitors are promising treatments for ER+ breast cancer, however resistance remains a challenge. Here, the authors analyse the NeoPalANA cohort and indicate that a 33 gene signature was predictive of response to neoadjuvant anastrozole and palbociclib.

    • Tim Kong
    • Alex Mabry
    • Cynthia X. Ma
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-17
  • The development of fast-charging and high-capacity negative electrodes is critical for advanced lithium-ion batteries. Here, authors use a vacancy engineering strategy to develop a layered Prussian blue analogue with competitive rate capability, delivering a specific capacity of 510 mAh g−1 at a specific current of 8 A g−1.

    • Chongwei Gao
    • Ming Chen
    • Feiyu Kang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Safe lithium-ion batteries require stable electrolytes with high chemical resistance and high thermal tolerance. Chen et al. find a solid lithium-salt electrolyte that is able to give rise to a prolonged battery life and a delayed decomposition of battery cathodes.

    • Zonghai Chen
    • Yang Ren
    • Khalil Amine
    Research
    Nature Communications
    Volume: 4, P: 1-8
  • MnBi2Te4 has an appealing combination of topological bands and magnetic ordering. While chemical doping with Sb can be used to tune these properties, it typically comes with an increase in defect density. Here, Chen, Wang, Li, Duan, and coauthors demonstrate a defect engineering approach that preserves the topological and magnetic properties of Mn(Bi1-xSbx)2Te4.

    • Haonan Chen
    • Jiayu Wang
    • Cheng Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Ion exchange is a powerful method to access metastable materials for energy storage, but identifying lithium and sodium interchange in layered oxides remains challenging. Using such model materials, vacancy level and corresponding lithium preference are shown to be crucial for ion exchange pathway accessibility.

    • Yu Han
    • Weihang Xie
    • Chong Liu
    Research
    Nature Materials
    Volume: 23, P: 951-959
  • The understanding of the reemergence of pressure induced superconductivity in alkali-metal intercalated FeSe is hampered by sample complexities. Here, Sun et al. report the electronic properties of (Li1–xFe x )OHFe1–ySe single crystal not only in the reemerged superconducting state but also in the normal state.

    • J. P. Sun
    • P. Shahi
    • J.-G. Cheng
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-7
  • Electrochemical hydrogenation drives a reversible conductor–insulator transition in graphene. Authors show that it is 10⁶× faster than other methods and tunable by isotope effects and lattice corrugations, enabling ionic control of 2D electronics.

    • Y.-C. Soong
    • H. Li
    • M. Lozada-Hidalgo
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • A miniaturized and low-power-consumption system is designed to allow the accurate sensing and wireless transmission of internal temperature and strain signals inside lithium-ion batteries with negligible influence on their performance, improving their safety.

    • Jinbao Fan
    • Chenchen Liu
    • Daining Fang
    Research
    Nature
    Volume: 641, P: 639-645
  • Micrometre-sized particles of two niobium tungsten oxides have high volumetric capacities and rate performances, enabled by very high lithium-ion diffusion coefficients.

    • Kent J. Griffith
    • Kamila M. Wiaderek
    • Clare P. Grey
    Research
    Nature
    Volume: 559, P: 556-563
  • This work employs nano- to microscale characterization to identify different structural change pathways associated with non-homogeneous reactions within the particles, and explores differences in the failure mechanisms of lithium-rich transition metal oxide materials at different current densities.

    • Zhimeng Liu
    • Yuqiang Zeng
    • Xin He
    Research
    Nature Nanotechnology
    Volume: 19, P: 1821-1830
  • Metal-fluoride-based lithium-ion battery cathodes are typically classified as conversion materials because reconstructive phase transitions are presumed to occur upon lithiation. Metal fluoride lithiation is now shown to be dominated instead by diffusion-controlled displacement mechanisms.

    • Xiao Hua
    • Alexander S. Eggeman
    • Clare P. Grey
    Research
    Nature Materials
    Volume: 20, P: 841-850
  • Understanding collective behaviour is an important aspect of managing the pandemic response. Here the authors show in a large global study that participants that reported identifying more strongly with their nation reported greater engagement in public health behaviours and support for public health policies in the context of the pandemic.

    • Jay J. Van Bavel
    • Aleksandra Cichocka
    • Paulo S. Boggio
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • Diffractive imaging of an important class of battery electrodes during cycling shows that lattice strain is a crucial yet overlooked factor that contributes to voltage fade over time.

    • Tongchao Liu
    • Jiajie Liu
    • Khalil Amine
    Research
    Nature
    Volume: 606, P: 305-312
  • Enhancing the superconducting temperature is often the main driver of synthetic studies of novel superconducting materials. Now, an approach yielding an air-stable iron selenide system that superconducts up to 40 K is reported.

    • X. F. Lu
    • N. Z. Wang
    • X. H. Chen
    Research
    Nature Materials
    Volume: 14, P: 325-329
  • Semi-metallic single crystals of antimony can be deposited using molecular beam epitaxy on molybdenum disulfide to create ohmic contacts with resistance of under 100 Ω µm at a contact length of 18 nm.

    • Mingyi Du
    • Weisheng Li
    • Xinran Wang
    Research
    Nature Electronics
    Volume: 8, P: 1191-1200
  • Lithium-rich layered oxides are promising cathode materials for next-generation batteries, but they suffer from long-standing problems such as voltage decay during cycling. Here the authors analyse the root cause of voltage decay and present a structure engineering strategy to mitigate the issue for a cobalt-free, lithium-rich layered oxide.

    • Dong Luo
    • He Zhu
    • Qi Liu
    Research
    Nature Energy
    Volume: 8, P: 1078-1087
  • The shuttling effect in Li–S batteries can be drastically suppressed by using a single-atom Co catalyst and polar ZnS nanoparticles embedded in a macroporous conductive matrix as a cathode. Using this strategy, Li–S pouch cells show stable cycling and high energy performances.

    • Chen Zhao
    • Gui-Liang Xu
    • Tianshou Zhao
    Research
    Nature Nanotechnology
    Volume: 16, P: 166-173
  • A mechano-intelligent transmission mechanism based on the slipknot delivers precise force signals for clinical practice and robotic operations such as minimally invasive surgery and tendon-driven robotics.

    • Yaoting Xue
    • Jiasheng Cao
    • Xiujun Cai
    ResearchOpen Access
    Nature
    Volume: 647, P: 889-896
  • The mechanism of high-temperature superconductivity in the iron-based materials remains not fully understood. Here, the authors report on ARPES measurements on an FeSe-based bulk superconductor, whose electronic properties are found to be similar to those of single-layer FeSe/STO films.

    • Lin Zhao
    • Aiji Liang
    • X. J. Zhou
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-8
  • Therapeutic gene editing in vivo is an ongoing challenge. Here, authors demonstrate Cas9 nickase guided DNA ligation as a nonviral method for installing permanent genomic corrections with favorable on target edit profiles in model animal cell types and adult mice.

    • Angela X. Nan
    • Michael Chickering
    • Jenny Xie
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-13
  • Photonic time crystals (PTCs) have unveiled unusual band structures and phenomena due to temporal modulation of optical properties. Here, the authors address non-Hermitian features of PTCs within a purely Hermitian Hamiltonian description, bridging classical and quantum approaches.

    • X. Y. Li
    • H. P. Zhang
    • X.-L. Wang
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-9
  • The study provides observational evidence of energy transfer in space plasmas, showing hydrogen and helium ions interact differently with ion-scale waves. Despite helium’s low abundance, they show their interaction can excite electrostatic waves, facilitating energy transfer across scales and challenging traditional models.

    • Z.-Y. Liu
    • Q.-G. Zong
    • Chao Yue
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Intercalation-type metal oxides are promising anodes for Li-ion batteries but suffer from low energy and power density together with cycling instability. A nanostructured rock-salt Nb2O5 formed via amorphous-to-crystalline transformation during cycling with Li+ is shown to exhibit enhanced performance.

    • Pete Barnes
    • Yunxing Zuo
    • Hui Xiong
    Research
    Nature Materials
    Volume: 21, P: 795-803
  • Long-lasting oxygen catalysts are crucial for rechargeable zinc-air batteries. Here, the authors report that placing tungsten atoms next to iron atoms within N4 units creates durable Fe-N4/W-N4 diatomic sites, enabling a zinc-air battery to cycle reliably for more than 10,000 h.

    • Yifan Li
    • Hanlin Wang
    • Zhi Li
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • It is generally believed that fast Li-ion transport in batteries can only be achieved when the host material does not change much with the Li movement. Here the authors show that controlled and reversible changes in host structures upon cycling can actually be used to improve the battery kinetics.

    • Jianping Huang
    • Peichen Zhong
    • Gerbrand Ceder
    Research
    Nature Energy
    Volume: 6, P: 706-714
  • Diluted magnetic semiconductors are promising spintronic materials, however the simultaneous doping of charge and magnetic moment has prevented synthesis of bulk samples. This work reports the synthesis of a bulk magnetic semiconductor (Ba1−xKx)(Zn1−yMny)2As2with Curie temperatures up to 180 K.

    • K. Zhao
    • Z. Deng
    • C. Q. Jin
    Research
    Nature Communications
    Volume: 4, P: 1-5